中岩动态行业动态产品动态党建动态
超声测桩小议应力检测 
2018-09-10 8103 返回列表

 

     超声测桩小议应力检测 

      由于桩基工程是地下隐蔽工程,桩基施工过程中难免会出现诸如断桩、夹层、离析等这样或那样的缺陷,成桩质量直接影响到桩的承载力能否满足设计要求。目前,在我国桩基质量检测方法有多种,其中反射波法由于其基本原理简单、快速无损、资料判读直观、准确度较高在桩基检测中占据主流地位。但是如果操作者不能认真对待检测过程中的每一步骤,都可能造成误判、漏判,以至造成工程隐患。 反射波法又叫应力波法,是以手锤或力棒等激震装置撞击桩顶,产生一纵向应力波信号沿桩身传播,由传感器(速度型或加速度型)拾取桩身缺陷及不同界面的反射信号,再通过一系列分析处理来判定桩身质量。由于该方法受外界环境、人员素质等多种因素影响,采集到的信号往往是包含多种频率成分的动态信号,所以应针对桩基检测的各个步骤采取相应的措施和手段,来获取桩身响应的真实信号。超声测桩​认为低应变反射波法桩基检测可分为两个阶段:现场采集数据阶段和室内数据分析处理阶段。桩基测试依据的信号是由偶合在桩顶的传感器接收到的响应信号,所以桩头处理是取得结果的关键。在测试前,应认真清理桩头浮浆及破碎部分,直到露出新鲜混凝土界面,且要求桩头有一定的强度,至少应在成桩后8~15天方可检测。
      桩土体系的自振频率是由体系的质量和刚度决定的。在质量一定的情况下,刚度越大,则体系的自振频率越高;刚度越小则体系的自振频率越低。在刚度一定的情况下,质量越大,则体系的自振频率越低;质量越小则体系的自振频率越高。目前,在反射波法测试中,应用速度计和加速度计都取得了良好的测试效果。加速度计的频带宽,高频特性较好;速度计的频带窄,但低频特性较好。在现场测试时,应视具体工程、具体场合选用不同的传感器,以期及时取得良好的曲线。通常在短桩、小直径桩检测时采用加速度计,发现浅部缺陷,减少浅部“盲区”;在大直径、长桩的检测中采用速度计,取得深部缺陷及良好的桩底反射信号。但在实际工程中,宜将两种传感器配合使用,以弥补不足。并可采用速度计进行普检,对有怀疑的桩采用加速度计配合检测,进行曲线对比,作出评判。安装传感器时,应当使传感器纵轴线与桩纵轴线相平行,保证传感器与桩顶平面垂直,使接收到的纵波信号无畸变。传感器与桩顶的偶合应采用熟石膏粉、橡皮泥、黄油等粘合剂,使传感器与桩顶严密合为一体,以免产生振动杂波。
      理论和实践都证明,不同的激励方式将产生不同的效果。桩身中各处的响应是由于激振而产生的,激振不仅要产生一个具有一定能量的应力波沿桩身传递,更重要的是要考虑其激振力的脉冲宽度。一般来讲激振能量与脉宽取决于激振工具的重量、外形尺寸、锤头材料及打击力度,因为这些参数决定力脉冲作用时间。作用时间越短促,其力脉冲时间越窄,所含的高频成分越丰富;反之作用时间越长,其能量将主要集中在低频范围,认识这一点是正确把握激振的关键。如铁锤敲击桩顶激发的脉冲窄而尖,其激发频率相对较高,对于检测短桩及发现浅部缺陷有好处;尼龙锤或橡皮锤或木锤激发的脉冲宽而低,激发频率相对较低,对于发现深部缺陷及长桩桩底反射有好处。所以,在检测过程中应根据不同的目的选用不同材质、不同重量的锤击震。
      目前在桩基检测中滤波技术应用最多,尤以低通滤波为先。对干扰杂波较丰富的曲线,使用滤波手段会取得令人欣喜的效果。通常根据频域中的频率成分的存在,采取不同的滤波手段。一般对于短桩、小直径桩采用的低通滤波值较高;而对于长桩、大直径桩采用的低通滤波值较低,这样可使桩身的响应曲线更为明显。
      在桩基检测放大技术中有线性放大和指数放大两种手段。线性放大可使细小的缺陷明显,而指数放大则可使各反射面相对明显,各有千秋。线性放大对于缺陷定量化有好处,而指数放大有时会使曲线畸变。通常采用线性放大使不明显的反射线性增大,了解缺陷程度,应用指数放大来定性分析不明显的界面反射。
      如果缺陷存在的部位位于一半桩长以内,则会产生二次反射叠加于曲线上,对这个问题应当认真区分否则会产生误判。一般来说,缺陷处重复反射的信号具有等时距的特点。如果存在反射界面等时距的现象,则就有重复反射的可能。

 

     以上文章来自超声测桩,如有雷同请通知修改,如有转载请阐明出处,有需要请联络我们!

上一篇: 低应变检测:常见需要进行验证与扩大检测的情况

下一篇: 武汉岩土所建立了白垩岩的化学-力学耦合本构模型